↓ Skip to main content

Frontiers

Memory Recall for High Reward Value Items Correlates With Individual Differences in White Matter Pathways Associated With Reward Processing and Fronto-Temporal Communication

Overview of attention for article published in Frontiers in Human Neuroscience, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
29 Mendeley
Title
Memory Recall for High Reward Value Items Correlates With Individual Differences in White Matter Pathways Associated With Reward Processing and Fronto-Temporal Communication
Published in
Frontiers in Human Neuroscience, June 2018
DOI 10.3389/fnhum.2018.00241
Pubmed ID
Authors

Nicco Reggente, Michael S. Cohen, Zhong S. Zheng, Alan D. Castel, Barbara J. Knowlton, Jesse Rissman

Abstract

When given a long list of items to remember, people typically prioritize the memorization of the most valuable items. Prior neuroimaging studies have found that cues denoting the presence of high value items can lead to increased activation of the mesolimbic dopaminergic reward circuit, including the nucleus accumbens (NAcc) and ventral tegmental area (VTA), which in turn results in up-regulation of medial temporal lobe encoding processes and better memory for the high value items. Value cues may also trigger the use of elaborative semantic encoding strategies which depend on interactions between frontal and temporal lobe structures. We used diffusion tensor imaging (DTI) to examine whether individual differences in anatomical connectivity within these circuits are associated with value-induced modulation of memory. DTI data were collected from 19 adults who also participated in an functional magnetic resonanceimaging (fMRI) study involving a value-directed memory task. In this task, subjects encoded words with arbitrarily assigned point values and completed free recall tests after each list, showing improved recall performance for high value items. Motivated by our prior fMRI finding of increased recruitment of left-lateralized semantic network regions during the encoding of high value words (Cohen et al., 2014), we predicted that the robustness of the white matter pathways connecting the ventrolateral prefrontal cortex (VLPFC) with the temporal lobe might be a determinant of recall performance for high value items. We found that the mean fractional anisotropy (FA) of each subject's left uncinate fasciculus (UF), a fronto-temporal fiber bundle thought to play a critical role in semantic processing, correlated with the mean number of high value, but not low value, words that subjects recalled. Given prior findings on reward-induced modulation of memory, we also used probabilistic tractography to examine the white matter pathway that links the NAcc to the VTA. We found that the number of fibers projecting from left NAcc to VTA was reliably correlated with subjects' selectivity index, a behavioral measure reflecting the degree to which recall performance was impacted by item value. Together, these findings help to elucidate the neuroanatomical pathways that support verbal memory encoding and its modulation by value.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 24%
Student > Master 5 17%
Researcher 4 14%
Student > Bachelor 3 10%
Lecturer > Senior Lecturer 1 3%
Other 2 7%
Unknown 7 24%
Readers by discipline Count As %
Psychology 10 34%
Neuroscience 6 21%
Agricultural and Biological Sciences 2 7%
Computer Science 1 3%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 8 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 June 2018.
All research outputs
#14,405,938
of 23,075,872 outputs
Outputs from Frontiers in Human Neuroscience
#4,603
of 7,210 outputs
Outputs of similar age
#185,829
of 328,663 outputs
Outputs of similar age from Frontiers in Human Neuroscience
#103
of 137 outputs
Altmetric has tracked 23,075,872 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,210 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 14.6. This one is in the 32nd percentile – i.e., 32% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,663 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 137 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.