↓ Skip to main content

Frontiers

How Glucosinolates Affect Generalist Lepidopteran Larvae: Growth, Development and Glucosinolate Metabolism

Overview of attention for article published in Frontiers in Plant Science, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
88 Dimensions

Readers on

mendeley
75 Mendeley
Title
How Glucosinolates Affect Generalist Lepidopteran Larvae: Growth, Development and Glucosinolate Metabolism
Published in
Frontiers in Plant Science, November 2017
DOI 10.3389/fpls.2017.01995
Pubmed ID
Authors

Verena Jeschke, Emily E. Kearney, Katharina Schramm, Grit Kunert, Anton Shekhov, Jonathan Gershenzon, Daniel G. Vassão

Abstract

Multiple lepidopteran larvae feed successfully on plants containing glucosinolates despite the diverse array of toxic and deterrent breakdown products, such as isothiocyanates (ITCs), formed upon plant damage. While much is known about how specialist lepidopterans metabolize and tolerate glucosinolates, there is little information about the metabolic fate of these plant defense compounds in specialized herbivores. Employing 13C- and 14C-labeled 4-methylsulfinylbutyl glucosinolate (glucoraphanin), we identified and quantified the major detoxification products of glucosinolates and ITCs in selected specialized and generalist larvae. While specialists prevented glucosinolate hydrolysis or diverted hydrolysis to form nitriles, hydrolysis in generalists proceeded to toxic ITCs, of which a portion were conjugated to glutathione. However, a large amount of ITCs remained unmodified, which may have led to the observed negative effects on growth and development. The performance of two generalist-feeding caterpillars, Spodoptera littoralis (African cotton leafworm) and Mamestra brassicae (cabbage moth) on Arabidopsis thaliana Col-0 and various glucosinolate-deficient mutants was investigated from hatching until pupation. We found that glucosinolates negatively affected larval growth and development, but not survival, with aliphatic glucosinolates having stronger effects than indolic glucosinolates, and the combination of the two glucosinolate types being even more detrimental to growth and development. Curiously, last instar larvae grew better on wild type than on non-glucosinolate-containing plant lines, but this could not be attributed to a change in detoxification rate or feeding behavior. Glucosinolates thus appear to be effective defenses against generalist lepidopteran herbivores at least during most stages of larval development. Nevertheless, the reversal of negative effects in the oldest instar is intriguing, and further investigation of this phenomenon may shed light on how generalists adjust their physiology to feed on diets with many different types of plant defense compounds.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 75 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 20 27%
Student > Master 18 24%
Researcher 13 17%
Student > Doctoral Student 4 5%
Student > Postgraduate 2 3%
Other 6 8%
Unknown 12 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 36 48%
Biochemistry, Genetics and Molecular Biology 16 21%
Chemistry 5 7%
Computer Science 2 3%
Veterinary Science and Veterinary Medicine 1 1%
Other 2 3%
Unknown 13 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 December 2017.
All research outputs
#15,867,545
of 23,577,761 outputs
Outputs from Frontiers in Plant Science
#11,545
of 21,632 outputs
Outputs of similar age
#268,448
of 440,701 outputs
Outputs of similar age from Frontiers in Plant Science
#254
of 437 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 21,632 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,701 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 437 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.